88 research outputs found

    Noisy Subspace Clustering via Thresholding

    Full text link
    We consider the problem of clustering noisy high-dimensional data points into a union of low-dimensional subspaces and a set of outliers. The number of subspaces, their dimensions, and their orientations are unknown. A probabilistic performance analysis of the thresholding-based subspace clustering (TSC) algorithm introduced recently in [1] shows that TSC succeeds in the noisy case, even when the subspaces intersect. Our results reveal an explicit tradeoff between the allowed noise level and the affinity of the subspaces. We furthermore find that the simple outlier detection scheme introduced in [1] provably succeeds in the noisy case.Comment: Presented at the IEEE Int. Symp. Inf. Theory (ISIT) 2013, Istanbul, Turkey. The version posted here corrects a minor error in the published version. Specifically, the exponent -c n_l in the success probability of Theorem 1 and in the corresponding proof outline has been corrected to -c(n_l-1

    Joint Sparsity with Different Measurement Matrices

    Full text link
    We consider a generalization of the multiple measurement vector (MMV) problem, where the measurement matrices are allowed to differ across measurements. This problem arises naturally when multiple measurements are taken over time, e.g., and the measurement modality (matrix) is time-varying. We derive probabilistic recovery guarantees showing that---under certain (mild) conditions on the measurement matrices---l2/l1-norm minimization and a variant of orthogonal matching pursuit fail with a probability that decays exponentially in the number of measurements. This allows us to conclude that, perhaps surprisingly, recovery performance does not suffer from the individual measurements being taken through different measurement matrices. What is more, recovery performance typically benefits (significantly) from diversity in the measurement matrices; we specify conditions under which such improvements are obtained. These results continue to hold when the measurements are subject to (bounded) noise.Comment: Allerton 201

    Subspace clustering of dimensionality-reduced data

    Full text link
    Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, assumed unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from "undersampling" due to complexity and speed constraints on the acquisition device. More pertinently, even if one has access to the high-dimensional data set it is often desirable to first project the data points into a lower-dimensional space and to perform the clustering task there; this reduces storage requirements and computational cost. The purpose of this paper is to quantify the impact of dimensionality-reduction through random projection on the performance of the sparse subspace clustering (SSC) and the thresholding based subspace clustering (TSC) algorithms. We find that for both algorithms dimensionality reduction down to the order of the subspace dimensions is possible without incurring significant performance degradation. The mathematical engine behind our theorems is a result quantifying how the affinities between subspaces change under random dimensionality reducing projections.Comment: ISIT 201
    • …
    corecore